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Abstract
Novikov algebras were introduced in connection with Poisson brackets of
hydrodynamic type and Hamiltonian operators in the formal variational
calculus. They also correspond to a class of vertex algebras. An automorphism
of a Novikov algebra is a linear isomorphism ϕ satisfying ϕ(xy) = ϕ(x)ϕ(y)

which keeps the algebraic structure. The set of automorphisms of a Novikov
algebra is a Lie group whose Lie algebra is just the Novikov algebra’s derivation
algebra. The theory of automorphisms plays an important role in the study of
Novikov algebras. In this paper, we study the automorphisms of Novikov
algebras. We get some results on their properties and classification in low
dimensions. These results are fundamental in a certain sense, and they will
serve as a guide for further development. Moreover, we apply these results to
classify Gel’fand–Dorfman bialgebras and Novikov–Poisson algebras. These
results also can be used to study certain phase spaces and geometric classical
r-matrices.

PACS numbers: 02.20.Sv, 02.20.−a, 02.30.−f, 02.40.−k

1. Introduction

A Novikov algebra A is a vector space over a field F with a bilinear product (x, y) → xy

satisfying

(x, y, z) = (y, x, z) (1.1)

and

(xy)z = (xz)y (1.2)

for x, y, z ∈ A, where

(x, y, z) = (xy)z − x(yz). (1.3)
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Novikov algebras were introduced firstly as a kind of algebraic systems related to a class
of operators in the formal calculus of variations to have the Hamiltonian property [1–3].
The study of Hamiltonian operators plays an important role in the integrability of certain
nonlinear partial differential equations. Following [3], the differential operator H with matrix
components Hij :

Hij =
N∑

k=1

(
ck
iju

(1)
k +

(
ck
ij + ck

ji

)
u

(0)
k

d

dx

)
(1.4)

is Hamiltonian if and only if
{
ck
ij

}
is the set of structure constants of a Novikov algebra, that is,

let {e1, . . . , eN } be a basis of the algebra, and eiej = ∑N
k=1 ck

ij ek . From another point of view,
Novikov algebras were also introduced in connection with the following Poisson brackets of
hydrodynamic type [4–6]:

{u(x), v(y)} = ∂x((uv)(x))δ(x − y) + (uv + vu)∂xδ(x − y). (1.5)

Furthermore, let A be a Novikov algebra and set

Â = A × F[t, t−1] (1.6)

where t is an indeterminate. Define a bracket operation on Â by

[u ⊗ tm, v ⊗ tn] = muv ⊗ tm+n−1 − nvu ⊗ tm+n−1 ∀u, v ∈ A m, n ∈ Z. (1.7)

Then (Â, [, ]) forms a Lie algebra. The Lie algebras constructed from Novikov algebras as
above can induce a class of vertex Lie algebras and vertex algebras, which are fundamental
algebraic structures in conformal field theory [7–10]. Moreover, the vertex algebras satisfying
certain conditions must correspond to some Novikov algebras (roughly speaking, such a vertex
algebra V is generated from V(2) = a Novikov algebra as vector spaces, with some additional
conditions) [11].

In fact, the name ‘Novikov algebra’ was given by Osborn [12, 13]. Moreover, on the
other hand, Novikov algebras are a special class of left-symmetric algebras which only satisfy
equation (1.1). Left-symmetric algebras are non-associative algebras arising from the study
of affine manifolds, affine structures and convex homogeneous cones [14–17].

The commutator of a Novikov algebra (or a left-symmetric algebra) A

[x, y] = xy − yx (1.8)

defines a (sub-adjacent) Lie algebra G = G(A). It is isomorphic to a subalgebra of Lie
algebra Â by letting m = n = 1 in equation (1.7). Let Lx,Rx denote the left and right
multiplication operators, respectively, i.e., Lx(y) = xy,Rx(y) = yx,∀x, y ∈ A. Then
for a Novikov algebra, the left multiplication operators form a Lie algebra and the right
multiplication operators are commutative. If every Rx is nilpotent, then A is called right-
nilpotent or transitive. The transitivity corresponds to the completeness of the affine manifolds
in geometry [14, 15].

There has been some progress in the study of Novikov algebras, such as the fundamental
structure theory of a finite-dimensional Novikov algebra over an algebraically closed field
with characteristic 0 [18], the infinite-dimensional simple Novikov algebras [12, 13], the
finite-dimensional simple Novikov algebras over an algebraically closed field with prime
characteristic [19], the Poisson structures on Novikov algebras [20], the classification of
Novikov algebras over the complex number field in low dimensions [21], the realization of
Novikov algebras [22, 23], the invariant bilinear forms on Novikov algebras [24, 25], the
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fermionic Novikov algebras [26] and so on. However, due to the non-associativity, there are
still many open questions which are quite different from any known algebras.

Among them, one of the most important topics is automorphism which plays an important
role not only in algebra itself, but also in many related fields. Obviously, its first important use
is to classify Novikov algebras in the sense of algebraic isomorphisms. Furthermore, the set
of automorphisms of a Novikov algebra is a Lie group which will be useful to relate the study
of Novikov algebras from pure algebra to geometry, which will lead to some applications in
physics.

In this paper, we study the automorphisms of Novikov algebras. The paper is organized
as follows. In section 2, we briefly give some basic properties of automorphisms of Novikov
algebras. We also discuss how to obtain some interesting automorphisms on a lot of Novikov
algebras based on a kind of realization theory of Novikov algebras. In section 3, we give
the classification of automorphisms and inner automorphisms of three-dimensional Novikov
algebras over C. In section 4, we discuss the classification of some bialgebras such as
Gel’fand–Dorfman bialgebras and Novikov–Poisson algebras. In section 5, we apply the
classification results in sections 2 and 3 to study certain phase spaces and geometric classical
r-matrices. In section 6, we give some conclusions based on the discussion in the previous
sections.

Throughout the paper, the algebras that we consider are of finite dimension.

2. The automorphism group of a Novikov algebra

Let A be a Novikov algebra. Let ϕ be a linear isomorphism of A, then ϕ is an automorphism
of A if and only if

ϕ(xy) = ϕ(x)ϕ(y) ∀x, y ∈ A. (2.1)

It is well known [27] that the set Aut(A) of automorphisms of A is a Lie group over the real
field R or the complex field C under the product

(ϕ1ϕ2)(x) = ϕ1(ϕ2(x)) ∀x ∈ A ϕ1, ϕ2 ∈ Aut(A). (2.2)

Let End(A) denote the set of all linear transformations of A. Then End(A) is a Lie algebra
with respect to the bracket

[A1,A2] = A1A2 − A2A1 ∀A1,A2 ∈ End(A). (2.3)

A derivation D of A is a linear transformation D ∈ End(A) satisfying

D(xy) = (Dx)y + x(Dy) ∀x, y ∈ A. (2.4)

It is also well known that the set D(A) of all derivations of A is a Lie subalgebra of End(A).
Moreover, D(A) is the Lie algebra of the automorphism group Aut(A) [27] since exp tD is an
automorphism of A for any D ∈ D(A), and t ∈ R or t ∈ C.

In fact, the above discussion holds for any non-associative algebra. The automorphisms of
Novikov algebras have many common properties which belong to all non-associative algebras.
Moreover, it is easy to see that any automorphism of a Novikov algebra is also an automorphism
of its sub-adjacent Lie algebra.

In general, the automorphism group Aut(A) is very complicated and it is also difficult to
obtain non-trivial automorphisms. However, based on a kind of realization theory of Novikov
algebras in [22, 23], we can obtain some interesting automorphisms on a lot of Novikov
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algebras. Next we discuss them in detail. To make this work self-contained, we give a brief
introduction at first.

Let A be a commutative associative algebra with the product (, · , ) and D be a derivation.
Then the new product

x ∗a y = x · Dy + a · x · y (2.5)

makes (A, ∗a) a Novikov algebra for a = 0 by Gel’fand [3], for a ∈ F by Filipov [28] and for
a fixed element a ∈ A by Xu [20]. In [22], we show that the algebra (A, ∗) = (A, ∗0) given
by Gel’fand is transitive, and the other two kinds of Novikov algebras given by Filipov and Xu
are special deformations of the former. Moreover, in [22, 23] a deformation theory of Novikov
algebras is constructed and we prove that the Novikov algebras in dimension �3 can be realized
as the algebras defined by Gel’fand and their compatible infinitesimal deformations. We
conjecture that this conclusion is still true in higher dimensions. In particular, in dimensions
2 and 3, many transitive Novikov algebras (except (A6) with l = 0, (A8), (A10)) and
almost every non-transitive Novikov algebra (except only (E1)) can be realized through
equation (2.5).

Proposition 1. Let ϕ be an automorphism of (A, ·). If ϕD = Dϕ, then ϕ is an automorphism
of (A, ∗a) for a = 0 or a ∈ F. In particular, in this case, exp tD ∈ Aut(A, ∗a) for every
t ∈ F. For a ∈ A, if ϕD = Dϕ and ϕ(a) = a, then ϕ is an automorphism of (A, ∗a).

Proof. For a = 0 or a ∈ F, we have

ϕ(x ∗a y) = ϕ(x · Dy + a · x · y)

= ϕ(x) · ϕ(Dy) + a · ϕ(x) · ϕ(y)

= ϕ(x) ∗a ϕ(y) + ϕ(x) · (ϕD − Dϕ)(y).

Similarly, for a ∈ A, we have

ϕ(x ∗a y) = ϕ(x) ∗ϕ(a) ϕ(y) + ϕ(x) · (ϕD − Dϕ)(y).

Hence, the proposition holds. �

Corollary 1. The centralizer

CGL(A)(exp tD) = {ϕ ∈ GL(A)|ϕ exp tD = exp tDϕ} ⊂ Aut(A, ∗a) (2.6)

for a = 0 or a ∈ F, where GL(A) is the set of all invertible linear transformations on A.
For a ∈ A, the automorphism group of (A, ∗a) contains the intersection of the centralizer
CGL(A)(exp tD) and the isotropic subgroup of GL(A) at a, that is,

CGL(A)(exp tD) ∩ {ϕ ∈ GL(A)|ϕ(a) = a} ⊂ Aut(A, ∗a). (2.7)

Let us give the automorphisms of two-dimensional Novikov algebras over the complex
number field whose classification is given in [21]. Recall that the (form) characteristic matrix
of a Novikov algebra is defined as

A =



∑n
k=1 ck

11ek · · · ∑n
k=1 ck

1nek

· · · · · · · · ·∑n
k=1 ck

n1ek · · · ∑n
k=1 ck

nnek


 (2.8)

where {ei} is a basis of A and eiej = ∑n
k=1 ck

ij ek . Moreover, under the same basis, any
automorphism ϕ of A can be determined by a matrix, that is,
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ϕ =

a11 · · · a1n

· · · · · · · · ·
an1 · · · ann


 ϕ(ei) =

n∑
j=1

aij ej det ϕ �= 0. (2.9)

For any two-dimenisonal non-commutative Novikov algebra, we have known that it can be
realized through equation (2.5) [22, 23]. Thus, we have the following proposition.

Proposition 2. The automorphisms of two-dimensional Novikov algebras over C are given as
follows:

Characteristic matrix Automorphism group Associated (A, ·) and D Remark

(T1)

(
0 0
0 0

)
GL(2) =

(
a11 a12

a21 a22

)

a11a22 − a12a21 �= 0

Commutative

(T2)

(
0 0
0 e1

) (
a2

11 0
a21 a11

)
, a11 �= 0 Commutative

(N1)

(
e1 0
0 e2

) (
1 0
0 1

)
,

(
0 1
1 0

)
Commutative

(N2)

(
0 0
0 e2

) (
a11 0
0 1

)
, a11 �= 0 Commutative

(N3)

(
0 e1

e1 e2

) (
a11 0
0 1

)
, a11 �= 0 Commutative

(T3)

(
0 0

−e1 0

) (
a11 0
0 1

)
, a11 �= 0

(N3) with D =
(−1 0

0 0

)

and a = 0
Aut(T3) = Aut(N3)

(N4)

(
0 e1

0 e2

) (
a11 0
a21 1

)
, a11 �= 0

(N3) with D =
(−1 0

0 0

)

and a = e2

(N5)

(
0 e1

0 e1 + e2

) (
1 0

a21 1

)
(N3) with D =

(−1 0
0 0

)

and a = e1 + e2

(N6)

(
0 e1

le1 e2

)

l �= 0, 1

(
a11 0
0 1

)
, a11 �= 0

(N3) with D =
(

l − 1 0
0 0

)

and a = e2

Aut(N6) = Aut(N3)

At the end of this section, we discuss the inner automorphisms. The set of inner
automorphisms is the most important subset of the automorphism group of a Novikov algebra.
A general theory on inner automorphisms is given in [29].

Let A be a Novikov algebra. The Lie-subalgebra L(A) generated by all linear
transformations Lx,Ry (∀x, y ∈ A) is called the Lie multiplication algebra (or Lie
transformation algebra). It is easy to show that the Lie transformation algebra of a Novikov
algebra A is

L(A) = L(A) + F
[
Re1 , Re2 , . . . , Ren

]
(2.10)

where e1, . . . , en is a basis of A,L(A) is the set of left multiplications and F
[
Re1 , Re2 , . . . , Ren

]
is the polynomial algebra generated by Re1 , . . . , Ren

.
A derivation D of A is called an inner derivation if D ∈ L(A). It is obvious that the set

Inn(A) of all inner derivations is a (Lie) ideal of the Lie algebra D(A). An automorphism
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ϕ of A is inner if ϕ is contained in the subgroup of Aut(A) generated by exp(Inn(A)).
Thus ϕ = exp D1 · · · exp Dn, where Di ∈ Inn(A). Let Int(A) denote the subgroup of inner
automorphisms of A. It is a connected Lie group. Through direct computation, we have the
following proposition.

Proposition 3. The inner automorphisms of two-dimensional Novikov algebras are given as
follows:

Int(T1) = Int(N1) = Int(N2) = Int(N3) =
{(

1 0
0 1

)}
Int(T2) =

{(
1 0

a21 1

)}

Int(T3) = Int(N6) =
{(

a11 0
0 1

)
, a11 �= 0

}
Int(N4) =

{(
a11 0
a21 1

)
, a11 �= 0

}

Int(N5) =
{(

1 0
a21 1

)}
.

3. The automorphisms and inner automorphisms of three-dimensional
Novikov algebras

In this section, we give the automorphism groups and the inner automorphism groups of three-
dimensional Novikov algebras over the complex number field C for which the classification
is given in [21]. We give our main results in the following table:

Characteristic matrix Automorphism group Inner automorphism group

(A1)


0 0 0

0 0 0
0 0 0


 ϕ =


a11 a12 a13

a21 a22 a23

a31 a32 a33


 , det ϕ �= 0


1 0 0

0 1 0
0 0 1




(A2)


0 0 0

0 0 0
0 0 e1





a2

33 0 0
a21 a22 0
a31 a32 a33


 , a33a22 �= 0


 1 0 0

0 1 0
a31 0 1




(A3)


0 0 0

0 e1 0
0 0 e1





2a2

22 0 0
a21 a22 a23

a31 −a23 a22


 ;


2a2

22 0 0
a21 a22 a23

a31 a23 −a22


 ,

a22

(
a2

22 + a2
23

)
�= 0


 1 0 0

a21 1 0
a31 0 1




(A4)


0 0 0

0 0 e1

0 e1 e2





 a3

33 0 0
2a32a33 a2

33 0
a31 a32 a33


 , a33 �= 0


 1 0 0

0 1 0
a31 0 1




(A5)


0 0 0

0 0 e1

0 −e1 0





a22a33 − a23a32 0 0

a21 a22 a23

a31 a32 a33


 ,

a22a33 − a23a32 �= 0


 1 0 0

a21 1 0
a31 0 1




(A6)


0 0 0

0 e1 e1

0 −e1 le1





a2

22 + la2
23 0 0

a21 a22 a23

a31 −la23 a22


 ,

a2
22 + la2

23 �= 0


 1 0 0

a21 1 0
a31 0 1
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Characteristic matrix Automorphism group Inner automorphism group

(A7)


0 0 0

0 0 e1

0 le1 e2




l �= 1


 a3

33 0 0
(l + 1)a32a33 a2

33 0
a31 a32 a33


 , a33 �= 0


 1 0 0

(l + 1)a32 1 0
a31 a32 1




(A8)


0 0 0

0 0 0
0 e1 e2





 a3

33 0 0
a32a33 a2

33 0
a31 a32 a33


 , a33 �= 0


 1 0 0

a32 1 0
a31 a32 1




(A9)


0 0 0

0 0 0
0 e2 0





a11 0 0

0 a22 0
a31 0 1


 , a11a22 �= 0


1 0 0

0 a22 0
0 0 1


 , a22 �= 0

(A10)


0 0 0

0 0 0
0 e2 e1





 1 0 0

0 a22 0
a31 0 1


 , a22 �= 0


 1 0 0

0 a22 0
a31 0 1


 , a22 �= 0

(A11)


 0 0 0

0 0 0
e1 le2 0




|l| � 1, l �= 0


a11 a12 0

a21 a22 0
0 0 1


 l = 1,

a11a22 − a12a21 �= 0;
a11 0 0

0 a22 0
0 0 1


 l �= 1,

a11a22 �= 0


a11 0 0

0 a11 0
0 0 1


 l = 1, a11 �= 0


a11 0 0

0 al
11 0

0 0 1


 l �= 1, a11 �= 0

(A12)


 0 0 0

0 0 0
e1 e1 + e2 0





a11 0 0

a21 a11 0
0 0 1


 , a11 �= 0


 ea11 0 0

a11e
a11 ea11 0

0 0 1




(A13)


 0 0 0

0 e1 0
e1

1
2 e2 0





a2

22 0 0
0 a22 0
0 0 1


 , a22 �= 0


a2

22 0 0
0 a22 0
0 0 1


 , a22 �= 0


e1 0 0

0 e2 0
0 0 e3





1 0 0

0 0 1
0 1 0


 ,


1 0 0

0 1 0
0 0 1





0 1 0

1 0 0
0 0 1


 ,


0 1 0

0 0 1
1 0 0





0 0 1

1 0 0
0 1 0


 ,


0 0 1

0 1 0
1 0 0





1 0 0

0 1 0
0 0 1




(B1)


0 0 0

0 e2 0
0 0 e3





a11 0 0

0 1 0
0 0 1


 ,


a11 0 0

0 0 1
0 1 0




a11 �= 0


1 0 0

0 1 0
0 0 1




(B2)


 0 0 e1

0 e2 0
e1 0 e3





a11 0 0

0 1 0
0 0 1


 , a11 �= 0


1 0 0

0 1 0
0 0 1




(B3)


0 0 e1

0 e2 0
0 0 e3





a11 0 0

0 1 0
a31 0 1


 , a11 �= 0


a11 0 0

0 1 0
a31 0 1


 , a11 �= 0

(B4)


0 0 e1

0 e2 0
0 0 e1 + e3





 1 0 0

0 1 0
a31 0 1





 1 0 0

0 1 0
a31 0 1
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Characteristic matrix Automorphism group Inner automorphism group

(B5)


 0 0 e1

0 e2 0
le1 0 e3




l �= 0, 1


a11 0 0

0 1 0
0 0 1


 , a11 �= 0


a11 0 0

0 1 0
0 0 1


 , a11 �= 0

(C1)


0 0 0

0 0 0
0 0 e3





a11 a12 0

a21 a22 0
0 0 1


 ,

a11a22 − a12a22 �= 0


1 0 0

0 1 0
0 0 1




(C2)


 0 0 e1

0 0 0
e1 0 e3





a11 0 0

0 a22 0
0 0 1


 , a11a22 �= 0


1 0 0

0 1 0
0 0 1




(C3)


0 0 e1

0 0 0
0 0 e3





a11 0 0

0 a22 0
a31 0 1


 , a11a22 �= 0


a11 0 0

0 1 0
a31 0 1


 , a11 �= 0

(C4)


0 0 e1

0 0 0
0 0 e1 + e3





 1 0 0

0 a22 0
a31 0 1


 , a22 �= 0


 1 0 0

0 1 0
a31 0 1




(C5)


 0 0 e1

0 0 0
le1 0 e3




l �= 0, 1


a11 0 0

0 a22 0
0 0 1


 , a11a22 �= 0


a11 0 0

0 1 0
0 0 1


 , a11 �= 0

(C6)


 0 0 e1

0 0 e2

e1 0 e3





a11 0 0

0 a22 0
0 a32 1


 , a11a22 �= 0


1 0 0

0 a22 0
0 a32 1


 , a22 �= 0

(C7)


 0 0 e1

0 0 e2

e1 0 e3 + e2





a11 0 0

0 1 0
0 a32 0


 , a11 �= 0


1 0 0

0 1 0
0 a32 1




(C8)


0 0 e1

0 0 e2

0 0 e3





a11 a12 0

a21 a22 0
a31 a32 1


 ,

a11a22 − a12a21 �= 0


a11 0 0

0 a11 0
a31 a32 1


 , a11 �= 0

(C9)


 0 0 e1

0 0 e2

le1 0 e3




l �= 1, 0


a11 0 0

0 a22 0
0 a32 1


 , a11a22 �= 0


a1−l

22 0 0
0 a22 0
0 a32 1


 , a22 �= 0

(C10)


 0 0 e1

0 0 e2

le1 0 e3 + e2




l �= 1


a11 a12 0

0 1 0
a31 a32 1


 l = 0,

a11 �= 0
a11 0 0

0 1 0
0 a32 1


 l �= 0,

a11 �= 0


 1 0 0

0 1 0
a31 a32 1


 l = 0


1 0 0

0 1 0
0 a32 1


 l �= 0

(C11)


 0 0 e1

0 0 e2

e1 e2 e3





a11 a12 0

a21 a22 0
0 0 1


 ,

a11a22 − a12a21 �= 0


1 0 0

0 1 0
0 0 1




(C12)


 0 0 e1

0 0 e2

e1 le2 e3




l �= 0, 1


a11 0 0

0 a22 0
0 0 1


 , a11a22 �= 0


1 0 0

0 a22 0
0 0 1
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Characteristic matrix Automorphism group Inner automorphism group

(C13)


 0 0 e1

0 0 e2

le1 ke2 e3




l, k �= 1, 0


a11 a12 0

a21 a22 0
0 0 1


 l = k,

a11a22 − a12a21 �= 0
a11 0 0

0 a22 0
0 0 1


 l �= k,

a11a22 �= 0


a11 0 0

0 a11 0
0 0 1


 l = k, a11 �= 0




al−1
11 0 0

0 ak−1
11 0

0 0 1


 l �= k, a11 �= 0

(C14)


 0 0 e1

0 0 e2

e1 e1 + e2 e3





a11 0 0

a21 a11 0
0 0 1


 , a11 �= 0


 1 0 0

a21 1 0
0 0 1




(C15)


 0 0 e1

0 0 e2

le1 e1 + le2 e3




l �= 1, 0


a11 0 0

a21 a11 0
0 0 0


 , a11 �= 0


 ea21(l−1) 0 0

a21 ea21(l−1) ea21(l−1) 0
0 0 1




(C16)


0 0 e1

0 0 e2

0 e1 e3





a11 0 0

a21 a11 0
a31 0 1


 , a11 �= 0


 ea11 0 0

−a11 ea11 ea11 0
a31 0 1




(C17)


0 0 e1

0 0 e2

0 e1 e3 + e2





 1 0 0

a21 1 0
a31 a21 1





 1 0 0

0 1 0
a31 0 1




(C18)


0 0 e1 + e2

0 0 e2

0 −e2 e3





a11 0 0

0 a11 0
a31 a31 1


 , a11 �= 0


 1 0 0

0 1 0
a31 a31 1




(C19)


0 0 e1 + e2

0 0 e2

0 −e2 e3 + e1





 1 0 0

0 1 0
a31 a31 1





 1 0 0

0 1 0
a31 a31 1




(D1)


e2 0 0

0 0 0
0 0 e3





a11 a12 0

0 a2
11 0

0 0 1


 , a11 �= 0


1 a12 0

0 1 0
0 0 1




(D2)


e2 0 e1

0 0 e2

e1 e2 e3





a11 a12 0

0 a2
11 0

0 0 1


 , a11 �= 0


1 0 0

0 1 0
0 0 1




(D3)


 e2 0 e1

0 0 e2

e1 + e2 e2 e3





1 a12 0

0 1 0
0 0 1





1 a12 0

0 1 0
0 0 1




(D4)


 e2 0 e1

0 0 e2
1
2 e1 0 e3





a11 0 0

0 a2
11 0

0 a32 1


 , a11 �= 0


a11 0 0

0 a2
11 0

0 a32 1


 , a11 �= 0

(D5)


 e2 0 e1

0 0 e2
1
2 e1 0 e3 + e2





1 0 0

0 1 0
0 a32 1





−1 0 0

0 1 0
0 a32 1





1 0 0

0 1 0
0 a32 1




(D6)


 e2 0 e1

0 0 e2

le1 (2l − 1)e2 e3




l �= 1
2 , 1


a11 0 0

0 a2
11 0

0 0 1


 , a11 �= 0


a11 0 0

0 a2
11 0

0 0 1


 , a11 �= 0
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Characteristic matrix Automorphism group Inner automorphism group

(E1)


 0 0 0

−e1 0 0
0 0 e3





a11 0 0

0 1 0
0 0 1


 , a11 �= 0


a11 0 0

0 1 0
0 0 1


 , a11 �= 0

4. Classification of Gel’fand–Dorfman bialgebras and Novikov–Poisson algebras

In this section, we discuss the classification of some bialgebraic structures one of which is a
Novikov algebra through its automorphism group. The first example is the Gel’fand–Dorfman
bialgebra. A Gel’fand–Dorfman bialgebra A is a vector space with two operations ‘[·, ·], ∗’
such that (A, [·, ·]) forms a Lie algebra and (A, ∗) forms a Novikov algebra (which satisfies
equations (1.1) and (1.2)) with the following compatible identity:

[x ∗ y, z] − [x ∗ z, y] + [x, y] ∗ z − [x, z] ∗ y − x ∗ [y, z] = 0 ∀x, y, z ∈ A. (4.1)

This bialgebraic structure was introduced by Gel’fand and Dorfman in studying certain
Hamiltonian pairs [3]. In fact, similar to equations (1.4) and (1.5), the corresponding
Hamiltonian operator and Poisson bracket are:

Hij =
N∑

k=1

(
dk

iju
(0)
k + ck

iju
(1)
k +

(
ck
ij + ck

ji

)
u

(0)
k

d

dx

)
(4.2)

{u(x), v(y)} = [u, v](x)δ(x − y) + ∂x((u ∗ v)(x))δ(x − y) + (u ∗ v + v ∗ u)∂xδ(x − y)

(4.3)

respectively, where {e1, . . . , eN } is a basis of A and [ei, ej ] = ∑N
k=1 dk

ij ek, ei∗ej = ∑N
k=1 ck

ij ek .
Moroever, from a Gel’fand–Dorfman bialgebra (A, [·, ·], ∗), similar to equation (1.7), we also
can get a Lie algebra structure on Â by

[u ⊗ tm, v ⊗ tn] = [u, v] ⊗ tm+n + mu ∗ v ⊗ tm+n−1 − nv ∗ u ⊗ tm+n−1

∀u, v ∈ A m, n ∈ Z. (4.4)

It also plays an important role in the study of vertex algebras [30, 31].
Since there are two operations on a Gel’fand–Dorfman bialgebra, it is not easy to obtain

the classification in the sense of isomorphisms. Obviously, two Gel’fand–Dorfman bialgebras
(Ai, [·, ·], ∗), i = 1, 2, are isomorphic if and only if there exists a linear isomorphism
f : A1 → A2, such that

f ([a, b]) = [f (a), f (b)] f (a ∗ b) = f (a) ∗ f (b) ∀a, b ∈ A1. (4.5)

Thus we often need to discuss two algebraic isomorphisms simultaneously. Moreover, it
is also obvious that a linear transformation of a Gel’fand–Dorfman bialgebra itself is an
(algebraic) isomorphism (called an automorphism) if and only if it is an automorphism of both
the Novikov algebra and the Lie algebra, that is, it is at the intersection of the automorphism
groups of the Novikov algebra and the Lie algebra.

Usually, we need to fix an algebraic system which has been classified at first and then we
classify the other algebraic structure which is compatible with the former. In general, we need
the following three steps:

Step 1. Classify one algebraic system with structure constants.
Step 2. For the fixed algebraic system, find the compatible structure constants of the
second algebraic system.
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Step 3. Classify those compatible structure constants of the second algebraic system.
Here, we would like to point out that the corresponding linear transformations describing
the isomorphic relations among the second algebras with the different structure constants
must be in the automorphism group of the first algebraic system.

For a Gel’fand–Dorfman bialgebra, because the structure of the Lie algebra is much
simpler than that of the Novikov algebra, we can give the classification of Gel’fand–Dorfman
bialgebras as the classification of the compatible Lie algebras for the fixed Novikov algebras.

Let {ei} be a basis of a Gel’fand–Dorfman bialgebra (A, ∗, [·, ·]). Then (A, ∗, [·, ·]) is
determined by the (form) characteristic matrix given as

(A, ∗) =



∑n
k=1 ck

11ek · · · ∑n
k=1 ck

1nek

· · · · · · · · ·∑n
k=1 ck

n1ek · · · ∑n
k=1 ck

nnek




(A, [·, ·]) =



∑n
k=1 dk

11ek · · · ∑n
k=1 dk

1nek

· · · · · · · · ·∑n
k=1 dk

n1ek · · · ∑n
k=1 dk

nnek




(4.6)

where ei ∗ ej = ∑n
k=1 ck

ij ek and [ei, ej ] = ∑n
k=1 dk

ij ek .
For a fixed (A, ∗), the elements in (A, [·, ·]) should satisfy the following equations:

d
p

ii = 0 d
p

ij = −d
p

ji

n∑
l=1

(
dl

ij d
p

lk + dl
jkd

p

li + dl
kid

p

lj

) = 0 p = 1, . . . , n (4.7)

n∑
l=1

(
dl

ij c
p

lk − dl
ikc

p

lj + d
p

lkc
l
ij − d

p

lj c
l
ik − dl

jkc
p

il

) = 0 p = 1, . . . , n. (4.8)

From the automorphism groups of Novikov algebras given in section 2 and through
equations (4.7) and (4.8) and direct computation, we have the following proposition.

Proposition 4. The classification of Gel’fand–Dorfman bialgebras in dimension 2 is given
in the following table (for clear expressions, we indicate the results of the three steps of
classification in three columns, respectively):

Characteristic Compatible characteristic Characteristic matrix
matrix (A, ∗) matrix (A, [·, ·]) (A, [·, ·])

(T1)

(
0 0
0 0

) (
0 d1

12e1 + d2
12e2

−d1
12e1 − d2

12e2 0

) (
0 0
0 0

)
,

(
0 e1

−e1 0

)

(T2)

(
0 0
0 e1

) (
0 d1

12e1

−d1
12e1 0

) (
0 0
0 0

)
,

(
0 e1

−e1 0

)

(T3)

(
0 0

−e1 0

) (
0 d1

12e1

−d1
12e1 0

) (
0 d1

12e1

−d1
12e1 0

)

(N1)

(
e1 0
0 e2

) (
0 0
0 0

) (
0 0
0 0

)

(N2)

(
0 0
0 e2

) (
0 0
0 0

) (
0 0
0 0

)
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Characteristic Compatible characteristic Characteristic matrix
matrix (A, ∗) matrix (A, [·, ·]) (A, [·, ·])

(N3)

(
0 e1

e1 e2

) (
0 d1

12e1

−d1
12e1 0

) (
0 d1

12e1

−d1
12e1 0

)

(N4)

(
0 e1

0 e2

) (
0 d1

12e1

−d1
12e1 0

) (
0 d1

12e1

−d1
12e1 0

)

(N5)

(
0 e1

0 e1 + e2

) (
0 d1

12e1

−d1
12e1 0

) (
0 d1

12e1

−d1
12e1 0

)

(N6)

(
0 e1

le1 e2

)

l �= 0, 1

(
0 d1

12e1

−d1
12e1 0

) (
0 d1

12e1

−d1
12e1 0

)

On the other hand, there is another bi-algebraic structure, which is a commutative
associative algebra structure compatible with a Novikov algebra structure. It is the so-called
Novikov–Poisson algebra. A Novikov–Poisson algebra A is a vector space with two operations
‘·, ◦’ such that (A, ·) forms a commutative associative algebra (which may not have an identity
element) and (A, ◦) forms a Novikov algebra with the compatible identities

(x · y) ◦ z = x · (y ◦ z) = y · (x ◦ z) (4.9)

(x ◦ y) · z − x ◦ (y · z) = (y ◦ x) · z − y ◦ (x · z) (4.10)

for x, y, z ∈ A. Novikov–Poisson algebras were introduced to construct a tensor theory
since in general the tensor product of two arbitrary Novikov algebras is not a Novikov
algebra. But the tensor product of two Novikov–Poisson algebras is still a Novikov–
Poisson algebra. Moreover, there exists a Hamiltonian superoperator associated with a
Novikov–Poisson algebra (A, ·, ◦) with an identity element 1 in (A, ·) such that 1 ◦ 1 = 2
[19, 20].

As in the case of Gel’fand–Dorfman bialgebras, we can also give the classification of
Novikov–Poisson algebras as the classification of the compatible commutative associative
algebras for the fixed Novikov algebras. In fact, let (A, ·, ◦) be a Novikov–Poisson algebra
with a basis {ei}, and ei ◦ej = ∑n

k=1 ck
ij ek, ei ·ej = ∑n

k=1 dk
ij ek . The corresponding equations

which are parallel to equations (4.7) and (4.8) are

d
p

ij = d
p

ji,

n∑
l=1

dl
ij d

p

lk =
n∑

l=1

dl
jkd

p

il p = 1, . . . , n (4.11)

n∑
l=1

dl
ij c

p

lk =
n∑

l=1

cl
jkd

p

il p = 1, . . . , n (4.12)

n∑
l=1

(
cl
ij d

p

lk − dl
jkc

p

il

) =
n∑

l=1

(
cl
jid

p

lk − dl
ikc

p

jl

)
p = 1, . . . , n. (4.13)

Proposition 5. The classification of Novikov–Poisson algebras in dimension 2 is given in the
following table (m, n ∈ C):
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Characteristic Compatible characteristic Characteristic matrix
matrix (A, ◦) matrix (A, ·) (A, ·)

(T1)

(
0 0
0 0

) 
d1

11e1 + d2
11e1 d1

12e1 + d2
12e2

d1
12e1 + d2

12e2 d1
22e1 + d2

22e2




(
0 0
0 0

)
,

(
0 0
0 e1

)
,

(
e1 0
0 e2

)
,

(
e1 0
0 0

)
,

(
0 e1

e1 e2

)

(T2)

(
0 0
0 e1

) (
0 me2

me2 ne1 + me2

) (
0 0
0 me1

)
,

(
0 e1

e1 e2

)

(T3)

(
0 0

−e1 0

) (
0 me1

me1 ne1 + me2

) (
0 me1

me1 me2

)
,

(
0 me1

me1 e1 + me2

)

(N1)

(
e1 0
0 e2

) (
ne1 0
0 me2

) (
ne1 0
0 me2

)
,m � n

(N2)

(
0 0
0 e2

) (
ne1 0
0 me2

) (
e1 0
0 me2

)
,

(
0 0
0 me2

)

(N3)

(
0 e1

e1 e2

) (
0 me2

me2 ne1 + me2

) (
0 me1

me1 me2

)
,

(
0 me1

me1 e1 + me2

)

(N4)

(
0 e1

0 e2

) (
0 me1

me1 ne1 + me2

) (
0 me1

me1 me2

)
,

(
0 0
0 e1

)

(N5)

(
0 e1

0 e1 + e2

) (
0 me1

me1 ne1 + me2

) (
0 me1

me1 me2

)
,

(
0 0
0 me1

)

(N6)

(
0 e1

le1 e2

)

l �= 0, 1

(
0 me1

me1 ne1 + me2

) (
0 me1

me1 me2

)
,

(
0 me1

me1 e1 + me2

)

5. The equivalences of certain phase spaces and geometric classical r-matrices

In the section we will see that the isomorphisms of left-symmetric algebras can induce the
equivalence of their corresponding phase spaces and geometric classical r-matrices. Hence
the results in sections 2 and 3 on Novikov algebras (as a special class of left-symmetric
algebras) can be applied to get the classification of equivalent maps of certain phase spaces
and geometric classical r-matrices.

Let G be a Lie algebra. According to [32, 33], a phase space T ∗G satisfies the following
conditions: (1) T ∗G = G ⊕ G∗ as the direct sum of vector spaces, where G∗ is the dual space
of G; (2) T ∗G is a Lie algebra such that the symplectic form ω defined by

ω(u + u∗, v + v∗) = u∗(v) − v∗(u) ∀u, v ∈ G u∗, v∗ ∈ G∗ (5.1)

is a 2-cocycle on T ∗G, that is,

ω([u1 + u∗
1, u2 + u∗

2], u3 + u∗
3) + CP = 0 ui ∈ G, u∗

i ∈ G∗ (5.2)

where ‘CP’ stands for ‘cyclic permutation’.
On the other hand, for a Lie algebra G, let r ∈ G ⊗ G. Then r is a solution of the classical

Yang–Baxter equation on G if and only if r satisfies [34–36]

[r12, r13] + [r12, r13] + [r13, r23] = 0 in U(G) (5.3)

where U(G) is the universal enveloping algebra of G and for r = ∑
i ai ⊗ bi ,

r12 =
∑

i

ai ⊗ bi ⊗ 1 r13 =
∑

i

ai ⊗ 1 ⊗ bi r23 =
∑

i

1 ⊗ ai ⊗ bi. (5.4)



7728 C Bai and D Meng

Moreover, r is called skew-symmetric if

r =
∑

i

(ai ⊗ bi − bi ⊗ ai). (5.5)

Let X be a smooth, affine algebraic variety over C. In [37, 38], a geometric classical r-matrix is
defined as a derivation r : C[X × X] → C[X × X], which satisfies the classical Yang–Baxter
equation

[r12, r13] + [r12, r13] + [r13, r23] = 0 in C[X × X × X] (5.6)

and the unitarity condition

r + r21 = 0 in C[X × X]. (5.7)

In fact, from [37], it is easy to know that a geometric classical r-matrix corresponds to
a skew-symmetric solution of the classical Yang–Baxter equation on G � V ∗ which is in
G ⊗ V ∗ − V ∗ ⊗ G, where G is a Lie algebra, ρ : G → gl(V ) is a representation of G with
dim V = dimG and ρ∗ : G → gl(V ∗) is its dual representation. Moreover, G � V ∗ is a Lie
algebra given by

[x + u∗, y + v∗] = [x, y] + ρ∗(x)v∗ − ρ∗(y)u∗ ∀x, y ∈ G u∗, v∗ ∈ V ∗. (5.8)

The relation between phase spaces and geometric classical r-matrices can be given through
left-symmetric algebras as follows:

Proposition 6. Let G be a Lie algebra. Then the following conditions are equivalent:

(1) There is a left-symmetric algebra structure on G;
(2) There is a bijective 1-cocycle for G. That is, there is a representation ρ : G → gl(V )

satisfying dim V = dimG and a linear isomorphism q from G onto V such that

q([x, y]) = ρ(x)q(y) − ρ(y)q(x) ∀x, y ∈ G. (5.9)

(3) T ∗G is a phase space such that the Lie bracket on T ∗G is given by G � G∗, that is,

[u1 + u∗
1, u2 + u∗

2] = [u1, u2] + ρ∗(u1)u
∗
2 − ρ∗(u2)u

∗
1

∀u1, u2 ∈ G u∗
1, u

∗
2 ∈ G∗ (5.10)

where ρ : G → gl(G) is a representation of G and ρ∗ : G → gl(G∗) is its dual
representation.

(4) There is a geometric classical r-matrix. That is, there is a Lie algebra G′ with
dimG′ = dimG and G is a representation space of G′ such that there exists a
skew-symmetric solution of classical Yang–Baxter equation on G′

� G∗ which is in
G′ ⊗ G∗ − G∗ ⊗ G′ and the Lie algebra structure on G′

� G∗ is given by equation (5.8).

Proof. In fact, we can get this proposition from the following references: ‘(1)⇔ (2)’ has
been proved in [14]; ‘(1)⇔ (3)’ has been proved in [32]; ‘(2)⇔ (4)’ has been proved in [37].
However, in order to give a more explicit picture, we briefly repeat these results through their
relations with left-symmetric algebras:

‘(1) ⇒ (2)’ L : G → gl(G) given by L(x) = Lx is a representation and id is a 1-cocycle.
‘(2) ⇒ (1)’ The left-symmetric algebra structure on G is defined by

xy = q−1(ρ(x)q(y)) ∀x, y ∈ G. (5.11)

‘(1) ⇒ (3)’ Let ρ = L, it is easy to know that the symplectic form ω defined by
equation (5.1) is a 2-cocycle. Hence T ∗G is a phase space.
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‘(3) ⇒ (1)’ Since the symplectic form ω is a 2-cocycle on T ∗G, we can get

[u1, u2] = ρ(u1)u2 − ρ(u2)u1 ∀u1, u2 ∈ G. (5.12)

Hence u1u2 = ρ(u1)u2 defines a left-symmetric algebra structure on G.
‘(1) ⇒ (4)’ Let G′ = G. Let {e1, . . . , en} be a basis of G and {e∗

1, . . . , e
∗
n} be its dual basis,

that is, e∗
i (ej ) = δij . Then it is easy to show that

r =
n∑

i=1

(ei ⊗ e∗
i − e∗

i ⊗ ei) (5.13)

satisfies the classical Yang–Baxter equation, where the representation of G is given by
L : G → gl(G).
‘(4) ⇒ (1)’ Let {e1, . . . , en} be a basis of G and {e∗

1, . . . , e
∗
n} be its dual basis. Let

{x1, . . . , xn} be a basis of G′. Then we can set

r =
n∑

i,j=1

(aij xi ⊗ e∗
j − aij e

∗
j ⊗ xi). (5.14)

There is a left-symmetric algebra structure on G defined by

eiej =
n∑

k=1

akiρ(xk)ej . (5.15)

�

Let A be a Novikov algebra, then it is a left-symmetric algebra satisfying an additional
condition RxRy = RyRx . Hence from the above proposition, we have

Corollary 2. Let A be a Novikov algebra. Then we have

(1) The corresponding bijective 1-cocycle satisfies an additional condition:

ρ(q−1(ρ(x)q(y))q(z) = ρ(q−1(ρ(x)q(z))q(y) ∀x, y, z ∈ A. (5.16)

(2) The corresponding phase space T ∗A with the representation ρ satisfies an additional
condition:

ρ(ρ(u1)u2)u3 = ρ(ρ(u1)u3)u2 ∀u1, u2, u3 ∈ A. (5.17)

(3) The corresponding geometric classical r-matrix satisfies an additional condition
n∑

l,m,s=1

(
aliasmbm

lj b
t
sk − aliasmbm

lkb
t
sj

) = 0 t = 1, . . . , n, (5.18)

where r = ∑n
i,j=1(aij xi ⊗ e∗

j − aij e
∗
j ⊗ xi) and ρ(xi)ej = ∑

k bk
ij ek .

On the other hand, it is natural to define that two bijective 1-cocycles (or phase spaces, or
geometric classical r-matrices) are equivalent if and only if their corresponding left-symmetric
algebras are isomorphic. For example, two bijective 1-cocycles (Gi , Vi, qi) are equivalent if
and only if there exists a linear isomorphism F : G1 → G2 such that

q2Fq−1
1 ρ1(x)q1(y) = ρ2(F (x))q2F(y) ∀x, y ∈ G1. (5.19)

Corollary 3. The classification of automorphisms of Novikov algebras in dimensions 2 and 3
gives the classification of equivalent maps of their corresponding phase spaces and geometric
classical r-matrices.
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6. Discussion and conclusions

From the results given in the previous sections, we can obtain:

1. In dimensions 2 and 3, the dimension of automorphism group of any Novikov algebra
which is not semisimple (the direct sum of fields) is >0. It should be true in higher
dimensions.

2. In dimensions 2 and 3, the inner automorphism group of a non-commutative algebra is non-
trivial, in particular, the inner automorphism group of a non-associative Novikov algebra
is non-trivial. And dim Int(A) � dim A. Furthermore, when A is a Novikov algebra in
dimension 2 or 3 and A is neither type (N4) nor type (C8), we have dim Int(A) < dim A.

3. In dimensions 2 and 3, Aut(A) = Int(A) �= {1} if and only if A is isomorphic to one of
the following types:

(T3), (N4), (N5), (N6), (A10), (A13), (B3), (B4), (B5), (C19), (D3), (D4), (D6), (E1).

We would like to point out that there exists a non-inner automorphism on the Novikov
algebra of type (D5), although all of its derivations are inner.

4. Obviously the automorphisms of two Novikov–Poisson algebra can induce an
automorphism of their tensor product algebra which is still a Novikov–Poisson algebra
[20]. However, in general, it is not true that every automorphism of the tensor product
algebra is induced as above.

At the end of this paper, we also would like to point out that it is interesting to see that
the dimensions of automorphism groups of certain infinite-dimensional Novikov algebras are
finite [13].
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